Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(2): e0346523, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38206002

RESUMO

The emulsifying ability of SA01-OmpA (outer membrane protein A from Acinetobacter sp. SA01) was found to be constrained by challenges like low production efficiency and high costs associated with protein recovery from E. coli inclusion bodies, as described in our previous study. The present study sought to benefit from the advantages of the targeted truncating of SA01-OmpA protein, taking into account the reduced propensity of protein expression as inclusion bodies and cytotoxicity. Here, the structure and activity relationship of two truncated recombinant forms of SA01-OmpA protein was unraveled through a hybrid approach based on experimental data and computational methodologies, representing an innovative bioemulsifier with advantageous emulsifying activity. The recombinant truncated SA01-OmpA variants were cloned and heterologously expressed in E. coli host cells and subsequently purified. The results showed increased emulsifying activity of N-terminally truncated SA01-OmpA (NT-OmpA) compared to full-length SA01-OmpA. Molecular dynamics (MD) simulations analysis demonstrated a direct correlation between the C-terminally truncated SA01-OmpA (CT-OmpA) and its expression as inclusion bodies. Analysis of the structure-activity relationship of truncated variants of SA01-OmpA revealed that, compared to the full-length protein, deletion of the ß-barrel portion from the N-terminal of SA01-OmpA increased the emulsifying activity of NT-OmpA while lowering its expression as inclusion bodies. Contrary to the full-length protein, the N-terminally truncated SA01-OmpA was not as cytotoxic, according to the MTT assay, FCM analysis, and AO/EB staining. The findings of this extensive study advance our knowledge of SA01-OmpA at the molecular level as well as the design and development of efficient bioemulsifiers.IMPORTANCEPrevious research (Shahryari et al. 2021, mSystems 6: e01175-20) introduced and characterized the SA01-OmpA protein as a multifaceted protein with a variety of functions, including maintaining cellular homeostasis under oxidative stress conditions, biofilm formation, outer membrane vesicles (OMV) biogenesis, and beneficial emulsifying capacity. By truncating the SA01-OmpA protein, the current study presents a unique method for developing protein-type bioemulsifiers. The findings indicate that the N-terminally truncated SA01-OmpA (NT-OmpA) has the potential to fully replace full-length SA01-OmpA as a novel bioemulsifier with significant emulsifying activity. This study opens up a new frontier in bioemulsifiers, shedding light on a possible relationship between the structure and activity of SA01-OmpA truncated forms.


Assuntos
Proteínas da Membrana Bacteriana Externa , Escherichia coli , Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo
2.
J Basic Microbiol ; 63(12): 1412-1425, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37670218

RESUMO

Carbonic anhydrase (CA) is one of the most vital enzymes in living cells. This study has been performed due to the significance of this metalloenzyme for life and the novelty of some CA families like ζ-CA to evaluate evolutionary processes and quality check their sequences. In this study, bioinformatics methods revealed the presence of ζ-CA in some eukaryotic and prokaryotic microorganisms. Notably, it has not been previously reported in prokaryotes. The coexistence of ß- and ζ-CAs in some microorganisms is also a novel finding as well. Also, our analysis identified several CA proteins with 6-14 amino acid intervals between histidine and cysteine in the second highly conserved motif, which can be classified as the novel ζ-CA subfamily members that emerged under the Zn deficiency of aquatic ecosystems and selection pressure in these environments. There is also a possibility that the achieved results are rooted in the contamination of samples from the environmental microbiome genome with genomes of diatom species and the occurrence of errors was observed in the DNA sequencing outcomes. Combining of all results from evolutionary analysis to quality control of ζ-CA DNA sequences is the incentive motivation to explore more the hidden aspects of ζ-CAs.


Assuntos
Anidrases Carbônicas , Diatomáceas , Humanos , Anidrases Carbônicas/genética , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Ecossistema , Diatomáceas/genética
3.
Proc Natl Acad Sci U S A ; 120(39): e2308238120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37729203

RESUMO

Vibrio cholerae, the causative agent of the disease cholera, is responsible for multiple pandemics. V. cholerae binds to and colonizes the gastrointestinal tract within the human host, as well as various surfaces in the marine environment (e.g., zooplankton) during interepidemic periods. A large adhesin, the Flagellar Regulated Hemagglutinin A (FrhA), enhances binding to erythrocytes and epithelial cells and enhances intestinal colonization. We identified a peptide-binding domain (PBD) within FrhA that mediates hemagglutination, binding to epithelial cells, intestinal colonization, and facilitates biofilm formation. Intriguingly, this domain is also found in the ice-binding protein of the Antarctic bacterium Marinomonas primoryensis, where it mediates binding to diatoms. Peptide inhibitors of the M. primoryensis PBD inhibit V. cholerae binding to human cells as well as to diatoms and inhibit biofilm formation. Moreover, the M. primoryensis PBD inserted into FrhA allows V. cholerae to bind human cells and colonize the intestine and also enhances biofilm formation, demonstrating the interchangeability of the PBD from these bacteria. Importantly, peptide inhibitors of PBD reduce V. cholerae intestinal colonization in infant mice. These studies demonstrate how V. cholerae uses a PBD shared with a diatom-binding Antarctic bacterium to facilitate intestinal colonization in humans and biofilm formation in the environment.


Assuntos
Diatomáceas , Vibrio cholerae , Animais , Humanos , Lactente , Camundongos , Bactérias , Agregação Celular , Trato Gastrointestinal , Intestinos , Vibrio cholerae/genética
4.
Biology (Basel) ; 12(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37372055

RESUMO

Carbonic anhydrases (CAs) are metalloenzymes that can help organisms survive in hydrothermal vents by hydrating carbon dioxide (CO2). In this study, we focus on alpha (α), beta (ß), and gamma (γ) CAs, which are present in the thermophilic microbiome of marine hydrothermal vents. The coding genes of these enzymes can be transferred between hydrothermal-vent organisms via horizontal gene transfer (HGT), which is an important tool in natural biodiversity. We performed big data mining and bioinformatics studies on α-, ß-, and γ-CA coding genes from the thermophilic microbiome of marine hydrothermal vents. The results showed a reasonable association between thermostable α-, ß-, and γ-CAs in the microbial population of the hydrothermal vents. This relationship could be due to HGT. We found evidence of HGT of α- and ß-CAs between Cycloclasticus sp., a symbiont of Bathymodiolus heckerae, and an endosymbiont of Riftia pachyptila via Integrons. Conversely, HGT of ß-CA genes from the endosymbiont Tevnia jerichonana to the endosymbiont Riftia pachyptila was detected. In addition, Hydrogenovibrio crunogenus SP-41 contains a ß-CA gene on genomic islands (GIs). This gene can be transferred by HGT to Hydrogenovibrio sp. MA2-6, a methanotrophic endosymbiont of Bathymodiolus azoricus, and a methanotrophic endosymbiont of Bathymodiolus puteoserpentis. The endosymbiont of R. pachyptila has a γ-CA gene in the genome. If α- and ß-CA coding genes have been derived from other microorganisms, such as endosymbionts of T. jerichonana and Cycloclasticus sp. as the endosymbiont of B. heckerae, through HGT, the theory of the necessity of thermostable CA enzymes for survival in the extreme ecosystem of hydrothermal vents is suggested and helps the conservation of microbiome natural diversity in hydrothermal vents. These harsh ecosystems, with their integral players, such as HGT and endosymbionts, significantly impact the enrichment of life on Earth and the carbon cycle in the ocean.

5.
Sci Rep ; 12(1): 14833, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050412

RESUMO

A group of biosurfactants, called rhamnolipids, have been shown to have antibacterial and antibiofilm activity against multidrug-resistant bacteria. Here, we examined the effect of rhamnolipid biosurfactants extracted from Pseudomonas aeruginosa MA01 on cell growth/viability, biofilm formation, and membrane permeability of methicillin-resistant Staphylococcus aureus (MRSA) ATCC6538 bacterial cells. The results obtained from flow cytometry analysis showed that by increasing the concentration of rhamnolipid from 30 to 120 mg/mL, the cell viability decreased by about 70%, and the cell membrane permeability increased by approximately 20%. In fact, increasing rhamnolipid concentration was directly related to cell membrane permeability and inversely related to cell survival. Microtiter plate biofilm assay and laser scanning confocal microscopy analysis revealed that rhamnolipid, at a concentration of 60 mg/mL, exerts a reducing effect on the biofilm formation of Staphylococcus aureus. Real-time PCR analysis for monitoring the relative changes in the expression of agrA, agrC, icaA, and icaD genes involved in biofilm formation and related to the quorum-sensing pathway after treatment with rhamnolipid indicated a reduced expression level of these genes, as well as sortase A gene. The results of the present study deepen our knowledge regarding the use of microbial natural products as promising candidates for therapeutic applications.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Biofilmes , Sobrevivência Celular , Glicolipídeos , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Percepção de Quorum
6.
Sci Rep ; 12(1): 8152, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581279

RESUMO

Bioethanol produced from lignocellulosic biomass is regarded as a clean and sustainable energy source. The recalcitrant structure of lignocellulose is a major drawback to affordable bioethanol production from plant biomass. In this study, a novel endo-1,4-xylanase, named Xyn-2, from the camel rumen metagenome, was characterized and evaluated for hydrolysis of agricultural wastes. The enzyme was identified as a psychrohalophilic xylanase with maximum activity at 20 °C, keeping 58% of the activity at 0 °C, and exhibiting twice as much activity in 0.5-4 M NaCl concentrations. Xyn-2 was able to hydrolyze wheat bran (100%), sunflower-seed shell (70%), wheat straw (56%), rice straw (56%), and rice bran (41%), in the relative order of efficiency. Besides, the ethanologenic B. subtilis AP was evaluated without and with Xyn-2 for bioethanol production from wheat bran. The strain was able to produce 5.5 g/L ethanol with a yield of 22.6% in consolidated bioprocessing (CBP). The contribution of Xyn-2 to ethanol production of B. subtilis AP was studied in an SSF system (simultaneous saccharification and fermentation) giving rise to a significant increase in ethanol production (p ≤ 0.001) to a final concentration of 7.3 g/L with a yield of 26.8%. The results revealed that the camel rumen metagenome might be an invaluable source of novel xylanolytic enzymes with potential application in lignocellulosic biomass valorization. At the same time, the results suggest that B. subtilis with a diverse carbon-source preference and sophisticated systems for production and secretion of enzymes might be a promising candidate for strain development for bioethanol production from plant biomass. It might be assumed that the fortification of B. subtilis enzymatic arsenal with select xylanolytic enzymes from camel rumen metagenome may have a great impact on bioethanol production.


Assuntos
Bacillus subtilis , Celulase , Animais , Bacillus subtilis/metabolismo , Biomassa , Camelus/metabolismo , Celulase/metabolismo , Fibras na Dieta , Etanol/química , Fermentação , Hidrólise , Metagenoma , Rúmen/metabolismo
7.
Curr Microbiol ; 79(4): 125, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35258711

RESUMO

Various studies have been conducted to understand the impact of environmental pollutants on cyanobacteria due to their abundant presence in aquatic and terrestrial environments, specific morphological and physiological characteristics, and high ecological flexibility in response to environmental changes. Here, the effect of different concentrations of cadmium on two native strains of cyanobacteria, namely Synechococcus sp. HS01 and Limnothrix sp. KO01 was studied and compared with each other. In this regard, the cyanobacterial growth, pigment contents, and esterase enzyme activity were evaluated after exposure of the cells to different concentrations of cadmium (II). The toxic effects of Cd(II) on the growth rate of Limnothrix sp. KO01, even at low concentrations, tended to be higher than those for Synechococcus sp. HS01. The content of pigments decreased by an increase in Cd(II) concentration. In compliance with the cell growth, the changes occurred in pigment contents of Limnothrix sp. KO01 was more sensitive than Synechococcus sp. HS01 in the presence of different concentrations of cadmium. Flow cytometry analysis of Cd(II) effects on esterase activity of both strains after 6, 24, 48, and 72 h of exposure to Cd(II) concentrations of 9, 27, 63, and 90 µM showed that tolerance to Cd(II) toxicity in Limnothrix sp. KO01 is less than Synechococcus sp. HS01. The results obtained in this study suggest high potentials of Synechococcus sp. HS01 for heavy metal bioaccumulation due to its considerable tolerance to cadmium.


Assuntos
Metais Pesados , Synechococcus , Cádmio/toxicidade , Esterases/farmacologia , Metais Pesados/farmacologia
8.
Iran J Biotechnol ; 19(3): e2686, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34825011

RESUMO

BACKGROUND: Antibiotic-resistant bacteria are a major threat to global health. Older antibiotics have become more or less ineffective as a result of widespread microbial resistance and an urgent need has emerged for the development of new antimicrobial strategies. Acidocin 4356 is a novel antimicrobial bacteriocin peptide produced by Lactobacillus acidophilus ATCC 4356 and capable of confronting the Pseudomonas aeruginosa ATCC 27853 infection challenges. According to our previous studies, the production of Acidocin 4356 is in parallel with cellular biomass production. OBJECTIVES: Given the costly production of Acidocin 4356, the development of a beneficial approach for increasing productivity of the cellular biomass has been targeted in the lab-scale fermenter for scale-up production of this bacteriocin. Therefore, in this study, we developed an inexpensive optimal culture medium based on the whey feedstock, evaluating this medium for scaling-up of the bacteriocin production from flask to fermenter. MATERIAL AND METHODS: In the first step, the optimization of the process parameters and medium components was carried out using the Plackett-Burman (PB) design and Response surface methodology (RSM) in flask culture. After optimization of the medium, bacteriocin production in the optimum culture medium was compared with de Man, Rogosa and Sharpe (MRS) medium by analyzing the intensity of the peptide band. Intensity analysis has been conducted on the PAGE band of the peptide using Image J software. Finally, the scale- up of bacteriocin production in the optimum culture medium was evaluated by batch fermentation in a 3-liter fermenter. RESULTS: In this study, a medium containing whey (40 g.L-1) and sodium acetate (5 g.L-1) was used as basal medium, and the effect of other factors were then evaluated. According to the PB design, three factors of peptone concentration, yeast extract concentrations and cultivation temperature were selected as the most effective factors which improve the growth of L. acidophilus. The condition providing the highest growth capacity for bacteriocin production were predicted based on the results of RSM as following: temperature 40 ° C, yeast (4 g.L-1), and peptone (8 g.L-1). Finally, the dry cell weight was obtained after incubation for 12 h as 2.25 g.L-1. Comparison of cell growth and bacteriocin production between MRS medium and optimized medium confirmed the efficacy of these optimal conditions for the cost-effective production of Acidocin 4356 in the flask. Besides, the scale- up of bacteriocin production has made under optimal condition in the 3-L fermenter. CONCLUSIONS: In this study, for the first time, scale- up production of Acidocin 4356 was presented by using a low-cost method based on whey feedstock to tackle P. aeruginosa infections.

9.
Cell Rep ; 37(7): 110002, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34788627

RESUMO

Infections typically begin with pathogens adhering to host cells. For bacteria, this adhesion can occur through specific ligand-binding domains. We identify a 20-kDa peptide-binding domain (PBD) in a 1.5-MDa RTX adhesin of a Gram-negative marine bacterium that colonizes diatoms. The crystal structure of this Ca2+-dependent PBD suggests that it may bind the C termini of host cell-surface proteins. A systematic peptide library analysis reveals an optimal tripeptide sequence with 30-nM affinity for the PBD, and X-ray crystallography details its peptide-protein interactions. Binding of the PBD to the diatom partner of the bacteria can be inhibited or competed away by the peptide, providing a molecular basis for inhibiting bacterium-host interactions. We further show that this PBD is found in other bacteria, including human pathogens such as Vibrio cholerae and Aeromonas veronii. Here, we produce the PBD ortholog from A. veronii and demonstrate, using the same peptide inhibitor, how pathogens may be prevented from adhering to their hosts.


Assuntos
Adesinas Bacterianas/metabolismo , Adesinas Bacterianas/ultraestrutura , Interações entre Hospedeiro e Microrganismos/fisiologia , Sequência de Aminoácidos/genética , Aderência Bacteriana/genética , Aderência Bacteriana/fisiologia , Sítios de Ligação/genética , Biofilmes , Cristalografia por Raios X/métodos , Escherichia coli , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos/genética
10.
Sci Rep ; 11(1): 13731, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215768

RESUMO

Bioethanol produced by fermentative microorganisms is regarded as an alternative to fossil fuel. Bioethanol to be used as a viable energy source must be produced cost-effectively by removing expense-intensive steps such as the enzymatic hydrolysis of substrate. Consolidated bioprocessing (CBP) is believed to be a practical solution combining saccharification and fermentation in a single step catalyzed by a microorganism. Bacillus subtills with innate ability to grow on a diversity of carbohydrates seems promising for affordable CBP bioethanol production using renewable plant biomass and wastes. In this study, the genes encoding alcohol dehydrogenase from Z. mobilis (adhZ) and S. cerevisiae (adhS) were each used with Z. mobilis pyruvate decarboxylase gene (pdcZ) to create ethanologenic operons in a lactate-deficient (Δldh) B. subtilis resulting in NZ and NZS strains, respectively. The S. cerevisiae adhS caused significantly more ethanol production by NZS and therefore was used to make two other operons including one with double copies of both pdcZ and adhS and the other with a single pdcZ but double adhS genes expressed in N(ZS)2 and NZS2 strains, respectively. In addition, two fusion genes were constructed with pdcZ and adhS in alternate orientations and used for ethanol production by the harboring strains namely NZ:S and NS:Z, respectively. While the increase of gene dosage was not associated with elevated carbon flow for ethanol production, the fusion gene adhS:pdcZ resulted in a more than two times increase of productivity by strain NS:Z as compared with NZS during 48 h fermentation. The CBP ethanol production by NZS and NS:Z using potatoes resulted in 16.3 g/L and 21.5 g/L ethanol during 96 h fermentation, respectively. For the first time in this study, B. subtilis was successfully used for CBP ethanol production with S. cerevisiae alcohol dehydrogenase. The results of the study provide insights on the potentials of B. subtilis for affordable bioethanol production from inexpensive plant biomass and wastes. However, the potentials need to be improved by metabolic and process engineering for higher yields of ethanol production and plant biomass utilization.


Assuntos
Álcool Desidrogenase/genética , Bacillus subtilis/genética , Etanol/metabolismo , Engenharia Metabólica , Piruvato Descarboxilase/genética , Bacillus subtilis/metabolismo , Biomassa , Etanol/química , Fermentação/genética , Hidrólise , Ácido Láctico/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Zymomonas/enzimologia , Zymomonas/genética
11.
mBio ; 12(2)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824212

RESUMO

Carbohydrate recognition by lectins governs critical host-microbe interactions. MpPA14 (Marinomonas primoryensis PA14 domain) lectin is a domain of a 1.5-MDa adhesin responsible for a symbiotic bacterium-diatom interaction in Antarctica. Here, we show that MpPA14 binds various monosaccharides, with l-fucose and N-acetylglucosamine being the strongest ligands (dissociation constant [Kd ], ∼150 µM). High-resolution structures of MpPA14 with 15 different sugars bound elucidated the molecular basis for the lectin's apparent binding promiscuity but underlying selectivity. MpPA14 mediates strong Ca2+-dependent interactions with the 3,4-diols of l-fucopyranose and glucopyranoses, and it binds other sugars via their specific minor isomers. Thus, MpPA14 only binds polysaccharides like branched glucans and fucoidans with these free end groups. Consistent with our findings, adhesion of MpPA14 to diatom cells was selectively blocked by l-fucose, but not by N-acetyl galactosamine. The MpPA14 lectin homolog present in a Vibrio cholerae adhesin was produced and was shown to have the same sugar binding preferences as MpPA14. The pathogen's lectin was unable to effectively bind the diatom in the presence of fucose, thus demonstrating the antiadhesion strategy of blocking infection via ligand-based antagonists.IMPORTANCE Bacterial adhesins are key virulence factors that are essential for the pathogen-host interaction and biofilm formation that cause most infections. Many of the adhesin-driven cell-cell interactions are mediated by lectins. Our study reveals for the first time the molecular basis underlying the binding selectivity of a common bacterial adhesin lectin from the marine bacterium Marinomonas primoryensis, homologs of which are found in both environmental and pathogenic species. The lectin-ligand interactions illustrated at the atomic level guided the identification of a ligand that serves as an inhibitor to block bacterium-host adhesion. With conventional bactericidal antibiotics losing their potency due to resistance, our work gives critical insight into an antiadhesion strategy to treat bacterial infections.


Assuntos
Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Biofilmes/crescimento & desenvolvimento , Lectinas/química , Lectinas/metabolismo , Marinomonas/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Ligantes , Marinomonas/química , Modelos Moleculares , Conformação Proteica
12.
Probiotics Antimicrob Proteins ; 13(4): 982-992, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33687634

RESUMO

Among seven strains of lactic acid bacteria (LAB) isolated from traditional dairy products, a Lactobacillus strain was identified through 16S rRNA gene sequencing and tentatively designated as Lactobacillus brevis MK05. This strain demonstrated the highest probiotic potential through biochemical analysis, including acid and bile salt resistance, as well as antibacterial activity. The collected cell-free supernatant (CFC) of L. brevis MK05 culture, compared with MRS broth with pH equal to the pH for CFC, revealed antimicrobial activity against Escherichia coli (ATCC 25922) and Staphylococcus aureus subsp. aureus (ATCC 25923), possibly due to the presence of antibacterial metabolites other than organic acids. This strain was, therefore, selected to assess the biological activity of its partially purified secretory proteins against MCF-7 cancer cells and normal fibroblast cells via the MTT assay. The partially purified cell-secreted proteins of this strain (hereafter referred to as Lb-PPSPs) showed a time and dose-dependent anti-cancer and apoptosis induction function. There was a remarkable decline in the survival rate of MCF-7 cells at doses equal to and higher than 0.5 mg/mL after 48 h. The changes in expression of the three genes involved in the apoptosis pathway (BAX, BCL-2, and BCL2L11) in MCF-7 cells treated with the Lb-PPSPs confirm its cytotoxic activity and apoptosis induction.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Bactérias/farmacologia , Levilactobacillus brevis , Probióticos , Humanos , Levilactobacillus brevis/classificação , Células MCF-7 , RNA Ribossômico 16S
13.
mSystems ; 6(1)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436517

RESUMO

An outer membrane protein A (OmpA) from Acinetobacter sp. strain SA01 was identified and characterized in-depth based on the structural and functional characteristics already known of its homologues. In silico structural studies showed that this protein can be a slow porin, binds to peptidoglycan, and exhibits emulsifying properties. Characterization of the recombinant SA01-OmpA, based on its emulsifying properties, represented its promising potentials in biotechnology. Also, the presence of SA01-OmpA in outer membrane vesicles (OMV) and biofilm showed that this protein, like its homologues in Acinetobacter baumannii, can be secreted into the extracellular environment through OMVs and play a role in the formation of biofilm. After ensuring the correct selection of the protein of interest, the role of oxidative stress induced by cell nutritional parameters (utilization of specific carbon sources) on the expression level of OmpA was carefully studied. For this purpose, the oxidative stress level of SA01 cell cultures in the presence of three nonrelevant carbon sources (sodium acetate, ethanol, and phenol) was examined under each condition. High expression of SA01-OmpA in ethanol- and phenol-fed cells with higher levels of oxidative stress than acetate suggested that oxidative stress could be a substantial factor in the regulation of SA01-OmpA expression. The significant association of SA01-OmpA expression with the levels of oxidative stress induced by cadmium and H2O2, with oxidative stress-inducing properties and lack of nutritional value, confirmed that the cells tend to harness their capacities with a possible increase in OmpA production. Collectively, this study suggests a homeostasis role for OmpA in Acinetobacter sp. SA01 under oxidative stress besides assuming many other roles hitherto attributed to this protein.IMPORTANCE Acinetobacter OmpA is known as a multifaceted protein with multiple functions, including emulsifying properties. Bioemulsifiers are surface-active compounds that can disperse hydrophobic compounds in water and help increase the bioavailability of hydrophobic hydrocarbons to be used by degrading microorganisms. In this study, an OmpA from Acinetobacter sp. SA01 was identified and introduced as an emulsifier with a higher emulsifying capacity than Pseudomonas aeruginosa rhamnolipid. We also showed that the expression of this protein is not dependent on the nutritional requirements but is more influenced by the oxidative stress caused by stressors. This finding, along with the structural role of this protein as a slow porin or its role in OMV biogenesis and biofilm formation, suggests that this protein can play an important role in maintaining cellular homeostasis under oxidative stress conditions. Altogether, the present study provides a new perspective on the functional performance of Acinetobacter OmpA, which can be used both to optimize its production as an emulsifier and a target in the treatment of multidrug-resistant strains.

14.
Appl Environ Microbiol ; 86(10)2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32169940

RESUMO

A longstanding awareness in generating resistance to common antimicrobial therapies by Gram-negative bacteria has made them a major threat to global health. The application of antimicrobial peptides as a therapeutic agent would be a great opportunity to combat bacterial diseases. Here, we introduce a new antimicrobial peptide (∼8.3 kDa) from probiotic strain Lactobacillus acidophilus ATCC 4356, designated acidocin 4356 (ACD). This multifunctional peptide exerts its anti-infective ability against Pseudomonas aeruginosa through an inhibitory action on virulence factors, bacterial killing, and biofilm degradation. Reliable performance over tough physiological conditions and low hemolytic activity confirmed a new hope for the therapeutic setting. Antibacterial kinetic studies using flow cytometry technique showed that the ACD activity is related to the change in permeability of the membrane. The results obtained from molecular dynamic (MD) simulation were perfectly suited to the experimental data of ACD behavior. The structure-function relationship of this natural compound, along with the results of transmission electron microscopy analysis and MD simulation, confirmed the ability of the ACD aimed at enhancing bacterial membrane perturbation. The peptide was effective in the treatment of P. aeruginosa infection in mouse model. The results support the therapeutic potential of ACD for the treatment of Pseudomonas infections.IMPORTANCE Multidrug-resistant bacteria are a major threat to global health, and the Pseudomonas bacterium with the ability to form biofilms is considered one of the main causative agents of nosocomial infections. Traditional antibiotics have failed because of increased resistance. Thus, finding new biocompatible antibacterial drugs is essential. Antimicrobial peptides are produced by various organisms as a natural defense mechanism against pathogens, inspiring the possible design of the next generation of antibiotics. In this study, a new antimicrobial peptide was isolated from Lactobacillus acidophilus ATCC 4356, counteracting both biofilm and planktonic cells of Pseudomonas aeruginosa A detailed investigation was then conducted concerning the functional mechanism of this peptide by using fluorescence techniques, electron microscopy, and in silico methods. The antibacterial and antibiofilm properties of this peptide may be important in the treatment of Pseudomonas infections.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/farmacologia , Lactobacillus acidophilus/química , Pseudomonas aeruginosa/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Cinética , Simulação de Dinâmica Molecular , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/fisiologia , Virulência/efeitos dos fármacos
15.
Sci Rep ; 9(1): 9474, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31263160

RESUMO

C-phycocyanin (C-PC) pigment, as a natural blue dye, has particular applications in various fields. It is a water-soluble protein which has anticancer, antioxidant and anti-inflammatory properties. Here, we introduce an efficient procedure for the purification of C-PC pigment, followed by conducting a comprehensive investigation of its cytotoxic effects on human breast cancer (MCF-7) cells and the underlying mechanisms. A novel four-step purification procedure including the adsorption of impurities with chitosan, activated charcoal, ammonium sulfate precipitation, and ion exchange chromatography was employed, achieving a high purity form of C-PC with purity index (PI) of 5.26. SDS-PAGE analysis showed the purified C-PC with two discrete bands, subunit α (17 kD) and ß (20 kD), as confirmed its identity by Native-PAGE. A highly purified C-PC was employed to evaluate its anticancer activity and underlying molecular mechanisms of action. The inhibitory effects of highly purified C-PC on the proliferation of human breast cancer cells (MCF-7) have detected by MTT assay. The IC50 values for 24, 48, and 72 hours of exposure to C-PC were determined to be 5.92, 5.66, and 4.52 µg/µl, respectively. Flow cytometric analysis of cells treated with C-PC, by Annexin V/PI double staining, demonstrated to induce MCF-7 cells apoptosis. Also, the results obtained from propidium iodide (PI) staining showed that MCF-7 cells treated with 5.92 µg/µl C-PC for 24 h would arrest at the G2 phase and 5.66 and 4.52 µg/µl C-PC for 48 and 72 h could induce cell cycle arrest at both G2 and S phases. The oxidative damage and mitochondrial dysfunction were evaluated to determine the possible pathways involved in C-PC-induced apoptosis in MCF-7 cells. Our findings clearly indicated that the treatment of MCF-7 cells with C-PC (IC50 for 24 h) increased the production of reactive oxygen species (ROS). Consequently, an increase in the lipid peroxidation (LPO) level and a reduction in the ATP level, mitochondrial membrane potential (MMP), glutathione (GSH) and its oxidized form (GSSG), occurred over time. The reduced expression levels of anti-apoptotic proteins, Bcl2 and Stat3, plus cell cycle regulator protein, Cyclin D1, using Real-Time PCR confirm that the C-PC-induced death of MCF-7 human breast cancer cells occurred through the mitochondrial pathway of apoptosis. Collectively, the analyses presented here suggest that C-PC has the potential so that to develop it as a chemotherapeutic anticancer drug.


Assuntos
Antineoplásicos , Proteínas de Bactérias , Cianobactérias/química , Neoplasias/tratamento farmacológico , Ficocianina , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Neoplasias/metabolismo , Neoplasias/patologia , Ficocianina/química , Ficocianina/isolamento & purificação , Ficocianina/farmacologia
16.
AMB Express ; 9(1): 86, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31209584

RESUMO

An extreme halophilic xylanase, designated as XylCMS, was characterized by cloning and expression of the encoding gene from a camel rumen metagenome. XylCMS proved to be a GH11 xylanase with high identity to a hypothetical glycosyl hydrolase from Ruminococcus flavefaciens. XylCMS with a molecular weight of about 47 kDa showed maximum activity at pH 6 and 55 °C. The enzyme activity was significantly stimulated by NaCl in 1-5 M concentrations. Interestingly, the optimum temperature was not influenced by NaCl but the Kcat of the enzyme was enhanced by 2.7-folds at 37 °C and 1.2-folds at 55 °C. The Km value was decreased with NaCl by 4.3-folds at 37 °C and 3.7-folds at 55 °C resulting in a significant increase in catalytic efficiency (Kcat/Km) by 11.5-folds at 37 °C and 4.4-folds at 55 °C. Thermodynamic analysis indicated that the activation energy (Ea) and enthalpy (∆H) of the reaction were decreased with NaCl by 2.4 and threefold, respectively. From the observations and the results of fluorescence spectroscopy, it was concluded that NaCl at high concentrations improves both the flexibility and substrate affinity of XylCMS that are crucial for catalytic activity by influencing substrate binding, product release and the energy barriers of the reaction. XylCMS as an extreme halophilic xylanase with stimulated activity in artificial seawater and low water activity conditions has potentials for application in industrial biotechnology.

17.
Methods Mol Biol ; 1995: 395-403, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31148141

RESUMO

Over the last decade, finding bacterial strains with ability to accumulate high concentrations of lipids has gained increasing interest, since these lipids may be used in different industries. Here we describe two methods for evaluation of lipid accumulation in cyanobacteria, following by our personal reflection on issues surrounding the use of these methods. First, we present the Bligh and Dyer protocol as a traditional extraction method using organic solvents for quantitative determination of lipids and next Nile red, a selective fluorescent stain, that has been used as a rapid approach for both qualitative and quantitative measurement of lipids.


Assuntos
Cianobactérias/metabolismo , Metabolismo dos Lipídeos , Lipídeos/análise , Cianobactérias/química , Corantes Fluorescentes/análise , Lipídeos/isolamento & purificação , Oxazinas/análise , Espectrometria de Fluorescência/métodos , Coloração e Rotulagem/métodos
18.
Ecotoxicol Environ Saf ; 169: 40-49, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30419505

RESUMO

The present study is pursuing our previous research, focused on some aspects of Nostoc entophytum ISC32 cell response to the stress caused by exposure to cadmium at the cellular and molecular levels. Variations in the antioxidant system (catalase and ascorbate peroxidase activity) of N. entophytum ISC32 exposed to varying concentrations of Cd (2, and 5 mg/L) resulted in a significant increase in the activity of both catalase and peroxidase. Activity of these enzymes was, however, not significantly changed in the presence of Cd concentrations of 10 and 20 mg/L. Levels of lipid peroxidation, as measured by malondialdehyde (MDA) assay, were observed in response to exposure to Cd (20 mg/L). There was, however, a sharp drop in both antioxidant and lipid peroxidation activities of Cd treated cells after 5 days exposure, likely in consequence of cellular damage. The content of chlorophyll a and phycobiliproteins of living cells were altered under Cd-induced conditions. TEM images of cyanobacterial cells treated with Cd showed cell surface alteration and modification along with altered cellular microcompartments. Cyanobacterial cells treated with Cd at concentrations below the minimum inhibitory concentration (MIC) remained with no apparent structural changes. However, at a higher concentration of Cd (30 mg/L), a clear detachment effect was observed between the mucilage external layer and cell membrane which may be attributed to cell plasmolysis due to toxic effects of Cd. Subsequently, the thickness of the ring-shaped mucilage external layer increased likely as a result of the cell defense mechanisms against toxic concentrations of Cd. Characterization of cells treated with Cd (30 and 150 mg/L) by scanning electron microscopy (SEM) indicated cell shrinkage with varying degrees of distortion and surface wrinkling. Energy-dispersive X-ray spectrometry (EDS) analysis suggested that Cd was not present as nanoparticles within the cell, but in the form of salt or other molecular structures. The up-regulation of chaperons was confirmed for GroEL and HtpG using real-time PCR and northern blot analyses. Interestingly, the expression of GroEL was markedly increased at lower Cd concentration (5 mg/L). However, the ISC32 strain accrued higher levels of HtpG transcript in response to an elevated concentration of Cd (15 mg/L). This pattern seems to be related to the fast and early induction of GroEL, which may be necessary for induction of other factors and heat shock proteins such as HtpG in Cd-treated Nostoc cells. The result of this study paves the way for a more detailed exploration of Cd effects on the defense mechanisms of cyanobacteria. Our research also shed some light on how cyanobacterial cells have evolved to respond to the heavy metal toxicity at the cellular, molecular and ultrastructural levels.


Assuntos
Proteínas de Bactérias/metabolismo , Cádmio/toxicidade , Chaperonina 60/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Nostoc/efeitos dos fármacos , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Clorofila A/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Nostoc/enzimologia , Nostoc/metabolismo , Nostoc/ultraestrutura , Oxirredução , Estresse Oxidativo , Peroxidase/metabolismo , Peroxidases/metabolismo , Ficobiliproteínas/metabolismo , Superóxido Dismutase/metabolismo
19.
Colloids Surf B Biointerfaces ; 175: 221-230, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30537618

RESUMO

C-Phycocyanin pigment was purified from a native cyanobacterial strain using a novel consecutive multi-step procedure and utilized for the first time for the green synthesis of phycocyanin-zinc oxide nanorods (PHY-ZnO NRs) by a simple, low-cost and eco-friendly approach. The PHY-ZnO NRs were characterized using UV-vis spectroscopy, X-ray diffraction (XRD), zeta potential measurement, FTIR, SEM, TEM, differential scanning calorimetry (DSC), thermogravimetric (TGA), and EDX spectroscopy analysis. The UV-vis spectra showed an absorption band at 364 nm which is characteristic of ZnO nanoparticles (ZnONPs). The rod-shaped PHY-ZnO NRs observed in the TEM and SEM images had an average diameter size of 33 nm, which was in good agreement with the size calculated by XRD. The elemental analysis of PHY-ZnO NRs composition showed that three emission peaks of zinc metal and one emission peak of oxygen comprised 33.88% and 42.50%, respectively. The thermogram of PHY-ZnO NRs sample exhibited the weight loss of biosynthesized nanoparticles registered to be 3%, emphasizing the purity and heat stability of zinc oxide nanorods coated with phycocyanin pigment-protein. MTT assay indicated that PHY-ZnO NRs had a less cytotoxicity on fibroblast L929 compared to the ZnONRs-treated cells. A remarkable increase in ROS level was measured in cells treated with ZnO at final concentrations of 100, 200 and 500 µg/ml (78 ± 7, 99 ± 8 and 116 ± 11, respectively). When it comes to PHY-ZnO NRs, a protective effect for phycocyanin was detected which declined the level of ROS content as confirmed by fluorescent microscopy. The distinctive features of phycocyanin for surface functionalization of ZnO nanoparticles deserve to be deemed as a nano-drug candidate for further researches.


Assuntos
Nanopartículas Metálicas/química , Nanotubos/química , Ficocianina/química , Óxido de Zinco/química , Administração Oral , Animais , Antibacterianos/administração & dosagem , Antibacterianos/química , Peso Corporal/efeitos dos fármacos , Linhagem Celular , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Masculino , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/ultraestrutura , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanotubos/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
20.
RSC Adv ; 9(41): 23508-23525, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35530580

RESUMO

Cyanobacteria, as one of the largest groups of phototrophic bacteria, have a high potential as an excellent source of fine chemicals and bioactive compounds, including lipid-like compounds, amino acid derivatives, proteins, and pigments. This study aimed to synthesize ZnO nanoparticles using the cell extract of the cyanobacterium Nostoc sp. EA03 (CEN-ZnO NPs) through a rapid and eco-friendly approach. The biosynthesized nanoparticles, CEN-ZnO NPs, were characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), zeta potential measurement, differential scanning calorimetry (DSC)/thermogravimetric analysis (TGA), FTIR, SEM, TEM, and EDX spectroscopy. The UV-Vis spectrum showed an absorption peak at 370 nm. The star-shaped CEN-ZnO NPs, as observed in the TEM and SEM images, had an average diameter of 50-80 nm. MIC and MBC values for E. coli, P. aeruginosa and S. aureus, were determined to be, respectively, 2000, 2000, and 64 µg ml-1, and 2500, 2500 and 128 µg ml-1. Further analysis through confocal laser scanning microscopy (CLSM) provided the observable confirmation that the CEN-ZnO NPs stunted the bacterial growth, preventing the formation of exopolysaccharides. The AFM analysis of surface topography of bacterial biofilm samples treated with CEN-ZnO NPs showed a rugged topography in some parts of the biofilm surface, indicating the destruction of biofilms. In contrast, in the untreated control samples, the structured biofilms were flat and prominent. MTT assay indicated that CEN-ZnO NPs had less cytotoxicity on the MRC-5 lung fibroblast cells compared with the cancerous treated A549 cells. As the concentration of the CEN-ZnO NPs increased, the amount of ROS produced in the tested bacterial strains also increased. Analyzing the data obtained from flow cytometry showed that the higher concentrations of CEN-ZnO NPs lead to a reduction in the viability of P. aeruginosa PAO1, E. coli and S. aureus. The biosynthesized ZnO nanoparticles using Nostoc cell extracts exhibited different attributes, inspiring enough to be considered for further investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA